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Abstract. A finite-difference method for solving the time-dependent Navier- 
Stokes equations for an incompressible fluid is introduced. This method uses the 
primitive variables, i.e. the velocities and the pressure, and is equally applicable to 
problems in two and three space dimensions. Test problems are solved, and an ap- 
plication to a three-dimensional convection problem is presented. 

Introduction. The equations of motion of an incompressible fluid are 

datui + ujju= --dip + vV2ui + Ei, (v E ) djuj =O, 

where ui are the velocity components, p is the pressure, po is the density, Ei are 
the components of the external forces per unit mass, v is the coefficient of kinematic 

viscosity, t is the time, and the indices i, j refer to the space coordinates xi, xt X7 j = 
1, 2, 3. i denotes differentiation with respect to xi, and at differentiation with 
respect to the time t. The summation convention is used in writing the equations. 

We write 

Ut=u 
7 X d ' povU) 

where U is a reference velocity, and d a reference length. We then drop the primes. 
The equations become 

(1) 9tui + Rujajui = -aip + V2ui + Et, 

(2) (9j=O, 

where R = Ud/v is the Reynolds number. It is our purpose to present a finite- 
difference method for solving these equations in a bounded region 7, in either two- 
or three-dimensional space. The distinguishing feature of this method lies in the 
use of Eqs. (1) and (2), rather than higher-order derived equations. This makes it 
possible to solve the equations and to satisfy the imposed boundary conditions 
while achieving adequate computational efficiency, even in problems involving 
three space variables and time. The author is not aware of any other method for 
which such claims can be made. 
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Principle of the Method. Equation (1) can be written in the form 

(1)' a tui + 9ip = 5;, 

where 5Yu depends on ui and E; but not on p; Eq. (2) can be differentiated to 
yield 

(2)' a0(a.u) = 0. 

The proposed method can be summarized as follows: the time t is discretized; at 
every time step 5 u is evaluated; it is then decomposed into the sum of a vector 
with zero divergence and a vector with zero curl. The component with zero diver- 
gence is a tui, which can be used to obtain ui at the next time level; the component 
with zero curl is Op. This decomposition exists and is uniquely determined when- 
ever the initial value problem for the Navier-Stokes equations is well posed; it has 
also been extensively used in existence and uniqueness proofs for the solution of 
these equations (see e.g. [1]). 

Let u , p denote not only the solution of (1) and (2) but also its discrete ap- 
proximation, and let Du be a difference approximation to 9juj. It is assumed that 
at time t = n At a velocity field uin is given, satisfying Dun = 0. The task at hand 
is to evaluate Uin+l from Eq. (1), SO that Dun+l 0. 

Let Tu,i bu,n+l - Bui approximate a tu i, where b is a constant and But a 
suitable linear combination of uin-i j > 0. An auxiliary field uZaux is first evaluated 
through 

(3) buiaux - Bui = Fiu 

where Fiu approximates 5Yju. U,aux differs from Uin+l because the pressure term 
and Eq. (2) have not been taken into account. U,aux may be evaluated by an im- 
plicit scheme, i.e. F,-u may depend on Ui2n, Uaux and intermediate fields, say uj*, 
u**. bu aux - Bui now approximates 5Yju to within an error which may depend 
on At. 

Let Gip approximate 9ip. To obtain ui2+l, pn+l it is necessary to perform the 
decomposition 

Fiu buiaux - Bui = Tui + Gpn?+l D(Tu) = 0. 

It is, however, assumed that DUn-i = 0, j > 0. It is necessary therefore only 
to perform the decomposition 

(4) uiaux - u_+l + b-lG,pn+1 

where Duin+l = 0, and Uin+l satisfies the prescribed boundary conditions. Since 
pn is usually available and is a good first guess for the values of pn+l, the decom- 
position (4) is probably best done by iteration. For that purpose we introduce the 
following iteration scheme: 

(5a) uinl,m+l = Uiaux -b-IGimp m > 1i 

(5b) pnfl+1 = pn+lm- XDU+l,m+l, m > 1, 

where X is a parameter, u 8n+1m+l and pn+l, m+1 are successive approximations to 
uI+l, pn+l, and G1mp is a function of pn+lrn+l and pn+l,, which converges to Gipn+- 
as Ipn+l, m+l - pn+l ml tends to zero. We set 
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pn+1,1 = pn 

The iterations (5a) are to be performed in the interior of D, and the iterations 
(5b) in D and on its boundary. 

It is evident that (5a) tends to (4) if the iterations converge. We are using 
Gimp instead of Gip in (5a) so as to be able to improve the rate of convergence of 
the iterations. This will be discussed in detail in a later section. The form of Eq. 
(5b) was suggested by experience with the artificial compressibility method [2] 
where, for the purpose of finding steady solutions of Eqs. (1) and (2), p was re- 
lated to ui by the equation 

'3tp = constant (a u3). 

When for some 1 and a small predetermined constant e 

max ip n+1, 1+1- 
_n+l,11 < E 

we set 

u n+ = U n+1, 1+1 pn+l = pnl, 1+1 

The iterations (5) ensure that Eq. (1), including the pressure term, is satisfied in- 
side D, and Eq. (2) is satisfied in D and on its boundary. 

The question of stability and convergence for methods of this type has not 
been fully investigated. I conjecture that the over-all scheme which yields u,n+1 in 
terms of u n is stable if the scheme 

Tut =Fu 

is stable. The numerical evidence lends support to this conjecture. 
We shall now introduce specific schemes for evaluating U,aux and specific rep- 

resentations for Du, Gip, Gimp. Many other schemes and representations can be 
found. The ones we shall be using are efficient, but suitable mainly for problems 
in which the boundary data are smooth and the domain D has a relatively simple 
shape. 

Evaluation of uxUX. We shall first present schemes for evaluating ulux, defined 
by (3). 

Equation (3) represents one step in time for the solution of the Burgers equation 

atui =iu 

which can be approximated in numerous ways. We have looked for schemes which 
are convenient to use, implicit, and accurate to O( At) + 0 (Ax2), where Ax is one 
of the space increments Axi, i = 1, 2, 3. Implicit schemes were sought because 
explicit ones typically require, in three space dimensions, that 

At < 6\Ax2 

which is an unduly restrictive condition. On the other hand, implicit schemes of 
accuracy higher than O( At) would require the solution of nonlinear equations at- 
every step, and make it necessary to evaluate U,aux and u!n+l simultaneously 
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rather than in succession. Since we assume throughout that At = O( Ax2), the gain 
in accuracy would not justify the effort. 

Two schemes have been retained after some experimentation. For both of them 

Tu_ (U-n+l - U,n)/ At, (b-1 At, Bu, u i/ At). 

They are both variants of the alternating direction implicit method. 
(A) In two-dimensional problems we use a Peaceman-Rachford scheme, as 

proposed by Wilkes in [3] in a different context. This takes the form 

UI(q,r) = Ui(q,r) - R 
At 

Ui(q,r) (U(q+1,r) - (q-1,O) 4Ax 1 

- R U2(q,r) (U(q,r+l) - Ui(q,r-1)) 

(6a) + 2Ax12 (uq(2+i,r + U<(ql,r) - 2Ubt(q,r)) 

+ 2AxE2 (u0(7 r+1) + Ui(qr-1r) - 2U0(q,r)) 

2At 
At * n 

Uaq~~~ (q,r= *, -R 4Ax2 U2(q, r)(U*(q+l, r)-*(1l) - 

(6b) ? A ^t 2(*z+lr)+ *(q.l, r) - U*(q,r) ) 

+ 2, 2 r+l) + Ui(q,r1) - 2Ue(q,r)) 

At 

where u* are auxiliary fields, and U(q,r) = u (q Ax, r Ax2). As usual, the one- 
dimensional systems of algebraic equations can be solved by Gaussian elimination. 

(B) In two-dimensional and three-dimensional problems we use a variant of 
the alternating direction method analyzed by Samarskii in [4]. This takes the form 

U*(q,r,s) - At Ui(q,r,s) - R 2Ax1 U2(q,r,s) (Ui(q+1r,s) -i(4q1,r1s)) 

+ At (8X4q?i,r,s) 4 14q_ lr.s) -2U2(q,r,s)) 

4AX2 

** =U~(qr,s)- RAt 

U(qr,S) 2AxS 2 U(q1r,s) (Ut(q1r+l,s) -U*(q,r)) 

+ A2 (Ui.*,rl) + Uiq.,r41) - 2Uux,r*)) 
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a~ux ** - ___ ** aux 
U7i(q, r, s) = U i(q, r, s) - 2Rx3 U3(q,r,s) (U,(q,r,s+?l) - Ui(q,r,s-1)) 

A\t aux aux u 
+ A (Ui(q,r,s+1-) + Ui(q,r,s-1) - 2uxr,s)) 

AX32 
q ,s 

+ AttEi(q,,r, s) 

Ui(q,r,s) -Ui(qAxi, rAX2, SAX3) , 

Ei(q,r,s) =Ei (qAx1, rAX2, SAX3). 

ui*, ui** are auxiliary fields. These equations can be written in the symbolic form 

(I - AtQ,)U,* = Un 

(7) (I- AtQ2)ui** = ui* M 

(I- AtQ3)U aux gU** + AtEi, 

where I is the identity operator, and Q, involves differentiations with respect to 
the variable xi only. 

It can be verified that when R = 0 scheme (6) is accurate to O( At2) + O( Ax2). 
When R # 0 however, they are both accurate to the same order. Scheme (7) is 
stable in three-dimensional problems; the author does not know of a simple ex- 
tension of scheme (6) to the three-dimensional case. Scheme (7) has two useful 
properties: It requires fewer arithmetic operations per time step than scheme (6), 
and because of the simple structure of the right-hand sides, the intermediate fields 
ui*, ui** do not have to be stored separately. 

If either scheme is to be used in a problem in which the velocities uin+1 are 
prescribed at the boundary, values of vi*, u **, u aux at the boundary have to be 
provided in advance so that the several implicit operators can be inverted. Con- 
sider the case of the scheme (7). We have 

i n+1= (I + AtQ1 + AtQ2 + AtQ3)U n + XtEi - AtG pn + O(At2)X 

vi*= (I + 4AtQ,)Uin + O(At2), 

i**= (I + AtQ1 + AtQ2)U n + O(At2)X 

Uiaux = (I + AtQ1 + AtQ2 + AtQ3)U n + AtEi + O(At2). 

From these relations it can be deduced that if we set at the boundary 

M*= U -n+l A AtQ2u n+l - AtQ3U.n+l - AtEi + At?ip, 

(8) Ui** - t +- AMtQ3uin+1- AtJA + AtGUp, 

U, aux = Un+l + AtGip, 

the scheme will remain accurate to O(At). Here Gi does not have to be identical 
with Gj; all we need is 

Gipn = G pn + 0( At). 

The reason for introducing the new operator G. is that at the boundary the normal 
component of Gi has to be approximated by one-sided differences, while this is 
not necessary in the interior of the domain D where Eq. (4) is assumed to hold. 

More accurate expressions for the auxiliary fields at the boundaries can be 
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used, provided one is willing to invest the additional programming effort required 
to implement them on the computer. Appropriate expressions for ui*, uiauX at the 
boundary can be derived for use with the scheme (6). 

It should be noted that for problems in which the viscosity is negligible, it is 
possible to devise explicit schemes accurate to O( At2) + O( Ax2) and stable when 
At = O( Ax). Such schemes will be discussed elsewhere. 

The Dufort-Frankel Scheme and Successive Point Over-Relaxation. In order 
to explain our construction of D, Gim and our choice of X for use in (5a) and (5b),, 
we need a few facts concerning the Dufort-Frankel scheme for the heat equation- 
and its relation to the relaxation method for solving the Laplace equation. 

Consider the equation 

(9) -V2u= =f, (2 12 +,012) 

in some nice domain D, say a rectangle. u is assumed known on the boundary of 
D. We approximate this equation by 

(10) -Lu f 
where L is the usual five-point approximation to the Laplacian, and u and f are- 
now m-component vectors. m is the number of internal nodes of the resulting dif- 
ference scheme. For the sake of simplicity we assume that the mesh spacings in the. 
xi and X2 directions are equal, Ax, = Ax2 Ax; this implies no essential restric, 
tion. The operator -L is represented by an m X m matrix A. 

We write 

A-=A'-E-E' 

where E, E' are respectively strictly upper and lower triangular matrices, and 4/ 
is diagonal. The convergent relaxation iteration scheme for solving (10) is defined 
by 

(11) (A' - cE)un+]' =(1 - c)A' + cE'}un + wf 

(see e.g. Varga [5]). w is the relaxationi factor, 0 < co < 2, and the un are the suc- 
cessive iterates. The evaluation of the optimal relaxation factor wo0,t depends on 
the fact that A satisfies "Young's condition (A)," i.e. that there exists a permuta-. 
tion matrix P such that 

(12) P1AP=A-N, 

where A is diagonal, and N has the normal form 

/0 G\ 

the zero submatrices being square. Under this condition, wopt can be readily de-, 
termined. 

The matrix A depends on the order in which the components of un+1 are com- 
puted from un. Changing that order is equivalent to transforming A into P-'AP, 
where P is a permutation matrix. 

We now consider the solution of (14) to be the asymptotic steady solution of 
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(13) OTU V2U + f 

and approximate the latter equation by the Dufort-Frankel scheme 

Uq, r - 
Uq,= 

2A (u+q + Uq_l,r + Uq,r+i + Uq,r-1 2u' - 2n-1) + 2ArTf 

Ax 2 -uUqqAx, rArx2, EAr) 
Uq, r~ 

AjAX,nT 

which approximates (13) when At = o( Ax). Grouping terms, we obtain 

I1+ 4 X2 )Uq,r 
- I1 4 Ax2 )Uq r (14) AT nU nin + +n 

- 2 AX2 (Uq+lr + Uq-l,r + Uq,r+1 + q,r-1) + 2ATf . 

Since Uq, r does not appear in (14), the calculation separates into two inde- 
pendent calculations on intertwined meshes, one of which can be omitted. When 
this is done, we can write 

Un=1 2n+1 (Un+1 has m components) . 

If we then write 

(15) 2= 8Ar/Ax 
1 + 4A1/ Ax 

we see that the iteration (14) reduces to an iteration of the form (11) where the 
new components of Un+1 are calculated in an order such that A has the normal 
form (12). The Dufort-Frankel scheme appears therefore to be a particular order- 
ing of the over-relaxation method whose existence is equivalent to Young's con- 
dition (A). 

The best value of ATr, Aopt, can be determined from copt and relation (15). 
We find that ATopt = O( Ax), therefore for Ar = ATopt the Dufort-Frankel scheme 
approximates, not Eq. (13), but rather the equation 

dTU = VU _ 2 ( 2) 2U + f. 

This is the equation which Garabedian in [6] used to estimate co(pt. It can be used 
here to estimate Ar07pt. These remarks obviously generalize to problems where 
AxI - Ax2 or where there are more than two space variables. 

.The following remark will be of use: We could have approximated Eq. (13) 
by the usual explicit formula 

(16) tUq,r- Uq,r = A (+l,r + Ul,r + Uq,r + 
U,r-1 

- 4uT) + A rf Ax 

and used this formula as an iteration procedure for solving (10). The resulting 
iteration converges only when ATr/Ax2 < 1/4, and the convergence is very slow. 
The rapidly converging iteration procedure (14) can be obtained from (16) by 
splitting the term U' r on the right-hand side into 2 (Un+1 + un ) 
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Representation of D, Gi and G.t, and the Iteration Procedure for Determining 
uin1, pn+Q. For the sake of clarity we shall assume in this section that the domain 
D is two-dimensional and rectangular, and that the velocities are prescribed at the 
boundary. Extension of the procedure to three-dimensional problems is immedi- 
ate, and extension to problems with other types of boundary conditions often pos- 
sible. Stress-free boundaries and periodicity conditions in particular offer no dif- 
ficulty. Domains of more complicated shape can be treated with the help of ap- 
propriate interpolation procedures. 

Our first task is to define D. Let 63 denote the boundary of D and e the set of 
mesh nodes with a neighbor in (B. In O - 63 we approximate the equation of con- 
tinuity by centered differences, i.e. we set 

(17) Du -2LxI (U1(q+l,r) - U1(q-1,r)) + 2Ax (U2(q, r+1) - U2(q,r-1)) = 0 

At the points of 6( we use second-order one-sided differences, so that Du is 
accurate to O( Ax2) everywhere. Consider the boundary line X2 = 0, represented 
by j = 1 (Fig. 1). We have on that line 

Du- 2 
[U2(q,2) - U2(q,l1) - 4(U2(q,3) - U2(q,l))] 

(18) Ax2 

+ 2Ax (U1(q+1,1) - = 0 

with similar expressions at the other boundaries. Equation (17) states that the 
total flow of fluid into a rectangle of sides 2 Ax,, 2 Ax2 is zero. Equation (18) does 
not have this elementary interpretation. 

l(q,3) 

A A~~(q 12) 

(q-l,l) (q, I) (q+1 ,1 ) 

FIGURE 1. Mesh Near a Boundary. 

We now define G(p at every point of D - c by 

1. 
Gip 2=x1 (Pq+,r - Pq-1,r), 

1 
G2P 2=x2 (Pq,r+i - Pq,r-i) , 

pq,r =-p(qAx, rAX2) , 

i.e. a ip is approximated by centered differences. It should be emphasized that 
these forms of Gip and Du are not the only possible ones. 
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It is our purpose now to perform the decomposition (4). ul+' is given on the 
boundary B3, U,aux is given in D-(B (the values of U,aux on (B, used in (6) or (7), 
are of no further use). pn+l is to be found in 5D (including the boundary) and u+1 

in D- (, so that in D - (B 

U aux = U,n+l + AtGip 

and in D (including the boundary) 

Dun+l = 0. 

This is to be done using the iterations (5), where the form of Gimp has not yet been 
specified. 

At a point (q, r) in D- B-C, i.e. far from the boundary, one can substitute 
Eq. (5a) into Eq. (5b), and obtain 

(19) pn+l,m+l - pn+l,m = _XDuaux + AtXDGmp. 

This is an iterative procedure for solving the equation 

(20) Lp = Duaux 

where Lp DGp approximates the Laplacian of p. With our choice of D and Gi, 
Lp is a five-point formula using a stencil whose nodes are separated by 2 Ax,, 2 AX2. 
Equation (20) is of course a finite-difference analogue of the equation 

(21) V2p = 0j0au,uj + ajEj, 

which can be obtained from Eq. (1) by taking its divergence. At points of (B or e 
if it is not possible to substitute (5a) into (5b) because at the boundary uin+1 is 
prescribed, Un+l,m+l = un+1 for all m, (5a) does not hold and therefore (19) is not 
true. Near the boundary the iterations (5) provide boundary data for (20) and 
ensure that the constraint of incompressibility is satisfied. We proceed as follows: 
Gimp and X are chosen so that (19) is a rapidly converging iteration for solving 
(20); Gimp at the boundary are then chosen so that the iterations (5) converge 
everywhere. 

Let (q, r) again be a node in D-U- (n+l- m and pn+l m are assumed 
known. We shall evaluate simultaneously pnlm+l and the velocity components 
involved in the equation DUn+1 = O at (q, r), i.e. un+lml, u2(+qrm+1) (Fig. 2). 
These velocity components depend on the value of p at (q, r) and on the values 
of p at other points. Following the spirit of the remark at the end of the last sec- 
tion, the value of p at (q, r) is taken to be 

1 (pn+l,m+l + p1 nm) 

while at other points we use pn+l,m. 
This leads to the following formulae 

(22a) pn+l,m+l -n+l,m Dun?lm+l 

(D given by (17)) 

(22b) =n+lm+l aux At (pn+l m 1 ( n+l,m+l n+l m (2) ul(q+l,r) = ul(q+l,r) -2^ (pq+2'r - 2(ipq,r' + pq,r' )) 



754 ALEXANDRE JOEL CHORIN 

(22c) =(-l,r) Ul(q-1,r) - 2AX ((p2+lf,r+l + pq,m) - p mr) 

n+l,m+l aux At n+l,m 1 n+l,m+l n+l,m 
(22d) U2(q,rr1) = U2(q,r+1) -2Ax2 (Pq,r+2 - 2!(Pq,r pq,r 

n+l,m+l aux 'At_ I -+,++nlm n+l,m\ 

(22e) U-q, r-1) = U2 (,r-1) 2 P ( 2 (Pq, r Pa, r pq, r-2 ) 

These equations define Gimp. Clearly, Gimp + tGzp. 
Equations (22) can be solved for pn+l,m+l, yielding 

(23a) pq,+r'+ = (1 + a, + aX2) [(1 - al - a)p+m - -XDu 

+ al (pq+2,r + pq-2 r) + a2 (pq,r+1 + pq,r- )] 

where a i = X At/4 Ax j, i = 1, 2. This can be seen to be a Dufort-Frankel relaxa- 
tion scheme for the solution of (20), as was to be expected. The A r of the preced- 
ing section is replaced here by X At/2. Corresponding to A-r0,t (or cwopt) we find 
Xopt. If p were known on (B and C, convergence of the iterations (23a) would follow 
from the discussion in the preceding section, and X = Xopt would lead to the highest 
rate of convergence. 

U2(q,r+I) 

Pq ,r 
Ui(q-i,r) (Pq X - 0U1(q+i,r) 

U2(q, r-) 

FIGURE 2. Iteration Scheme 

In (B and e formulae (22) are modified by the use of the known values of un+l 

at the boundary whenever necessary. This leads to the formulae, for (q, r) in e: 

(23b) pq,2' - (1+ a, + 2a2) [(1 - al 2a2)P,,2' - XDU 

? ai(pn+l + pn+1m) + Ofpn+1, 

and for (q, r) on (B: 
/ n+l ,m+l - (1 + ai-[l 1) rn+l,m - DUaux 

(23c) aijpq,i a,)-'[(Im- a1my, 

+ 
2a2(p+l3m 4(Pq,4'i 

q, 2 'm) 

etc. In (23b) Du is given by (17), and in (23c) by (18). u aux at the boundary is 
iiiterpreted as uin+l. Although no proof is offered, a heuristic argument and the 
numerical evidence lead us to state that the whole iteration system-Eqs. (23a), 
(23b), (23c)-converges for all X > 0 and converges fastest when X -- Xopt. None 
of the boundary instabilities which arise in two-dimensional vorticity-stream func- 
tion calculation has been observed. 

It can be seen that because our representation of Du = 0 expresses the balance 
of mass in a rectangle of sides 2 Ax j, i = 1, 2, the pressure iterations split into 
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two calculations on intertwined meshes, coupled at the boundary. The most effi- 
cient orderings for performing the iterations are such that the resulting over-all 
scheme is a Dufort-Frankel scheme for each one of the intertwined meshes. This 
involves no particular difficulty; a possible ordering for a rectangular grid is shown 
in Fig. 3. The iterations are to be performed until for some 1 

max -Ipn+1,1+1 - pn+l,11 < - 
q,r 

for a predetermined e. 

The new velocities U,n+l, i = 1, 2, are to be evaluated using (22b), (22c), (22d), 
(22e). This has to be done only after the pn+l,m have converged. There,is no need 
to evaluate and store the intermediate fields U,n+l m+l. A saving in computing time 
can be made by evaluating Duaux at the beginning of each iteration. We notice 
two advantages of our iteration procedure: Dun+1 can be made as small as one 
wishes independently of the error in Dun; and when pn+l, 1+ and pn+,,l differ by 
less than E, Dun+' = 0(Ec/X); it can be seen that X)opt = O(Ax-1), hence DUn+l = 

O(E Ax). A gain in accuracy appears, which can be used to relax the convergence 
criterion for the iterations. This gain in accuracy is due to the fact that the u,n+ 

are evaluated using an appropriate cotnbination of pnf+ll and pn+l,l+l, rather than 
only the latest iterate pn+l,l+1. 

F J D 
o 0 0 0 

0 0 0 0 

E 

H o o 0 0 

B o 0 

0 0 

I C K G A 

The domain is swept in the order AB,CD,EF, GH,IJ,K 

FIGURE 3. An Ordering for the Iteration Scheme 

Solution of a Simple Test Problem. The proposed method was first applied to 
a, simple two-dimensional test problem, used as a test problem by Pearson in [7] 
for a vorticity-stream function. method. D is the square 0 < xi < x, i = 1, 2; 
E, = E2 = 0; the boundary data are 

u = -cos xi sinx2e-2t, U2 = sin xi cos x2e-2t. 

The initial data are 
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ul =-cos xl sinx2, u2 =sin xlcos x2. 

The exact solution of the problem is 

ul = -cos xi sinx2e2t, u2 = sin xicos x2e-2t, 

p =-R '(cos 2x, + cos 2x2)e-4t, 

where R is the Reynolds number. This solution has the property 

ip = -Rujju ; 

hence curl (u ) satisfies a linear equation. Nevertheless, this problem is a fair test 
of our method because Duaux 0 0. 

We first evaluate Xopt. For the equation 

-Lu =f 

in 0, with a grid of mesh widths 2 Ax,, 2 AX2, and u known on the boundary, we 
have 

2 
opt =1 + (I-a 2)1/2 

where a = -1(cos 2 Ax1 + cos 2 Ax2) is the largest eigenvalue of the associated 
Jacobi matrix (see [5]). 

We put 

q=xot(At + At~ 
2 AX12 Ax22/ 

Equation (15) can be written as 

8q 
3opt = 1 

therefore 

q (1 -ot2)1/2 

and 

4 1 

(At/IAx12 + At/IAx22) (1 a a2)1/2 

We now assume Ax1 = Ax2 = Ax, obtaining 

2Ax2 
Xopt =At sin (2Ax) 

In Tables I, II, and III we display results of some sample calculations. n is 
the number of time steps; e(ui), i = 1, 2, are the maxima over D of the differences 
between the exact and the computed solutions ui. It is not clear how the error in 
the pressure is to be represented; pn is defined at a time intermediate between 
(n - 1) At and nAt; it is proportional to R in our nondimensionalization. There 
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are errors in p due to the fact, discussed at the end of the preceding section, that 
the iterations can be stopped before the pnfm have truly converged. e(p) in the 
tables represents the maximum over the grid of the differences between the exact 
pressure at time n At and the computed pn, divided by R; it is given mainly for the 
sake of completeness. The accuracy of the scheme is to be judged by the smallness 
of e(ui). 1 is the number of iterations; it is to be noted that the first iteration al- 
ways has to be performed in order that Eq. (1) be satisfied. "Scheme A" means 
that Uzaux was evaluated using Eq. (6), and "Scheme B" means Eq. (7) were used. 

TABLE I 

Scheme A; Ax = 7r/39; At = 2 Ax2 = 0.01397; E = Ax2; R = 1 

n e(ul). e(u2) e(p) 1 

1 2.8 X 10-4 2.6 X 10-4 0.0243 1 
2 2.7 X 10-4 2.0 X 10-4 0.0136 7 
3 1.5 X 10-4 1.3 X 10-4 0.0069 4 
4 1.8 X 10-4 1.9 X 10-4 0.0145 4 
5 1.3 X 10-4 1.7 >X 10-4 0.0089 5 
6 1.3 X 10-4 1.8 X 10-4 0.0116 4 
7 1.6 X 10-4 1.9 X 10-4 0.0144 4 
9 1.4 X 10-4 1.7 X 10-4 0.0147 4 

10 1.3 X 10-4 1.6 X 10-4 0.0156 4 

20 1.8 X 10-4 2.3 X 10-4 0.0241 4 

TABLE II 
Scheme A; Ax = 7r/39; At = 2AX2 = 0.01397; E =Ax3; R =1 

n e(ul) e(u2) e(p) I 
1 8.5 X 10-5 3.8 X 10-5 0.0059 10 
2 1.0 X 10-4 5.7 X 10-5 0.0067 10 
3 1.0 X 10-4 7.0 X 10-5 0.0068 10 
4 1.0 X 10-4 7.8 X 10-5 0.0068 10 
5 1.0 X 10-4 8.3 X 10-5 0.0069 10 
6 9.7 X 10- 8.6 X 10-5 0.0070 10 
7 9.4 X 1 0- 8.7 X 10-5 0.0071 10 
8 9.0 X 10-5 8.7 X 10-5 0.0073 10 
9 8.7 X 10-5 8.7 X 10-5 0.0077 10 

10 8.3 X 10-5 8.5 X 10- 0.0082 10 

20 1.0 X 10-4 1.0 X 10-4 0.0216 9 

TABLE III 

Scheme B; Ax = 7r/39; At = 2AX2 = 0.00324; E = AX2; R = 20 

n e(ul) e(u2) e(p) 1 
1 1. x 10-s 1.2 X 10-s 0.0217 15 
3 1.9 X 10- 2.1 X 10-3 0.0234 9 
5 2.5 X 1I0- 2.8 X 10-3 0.0242 9 
7 3.3 X 10-3 3.2 X 10-3 0.0249 9 
9 4.0 X 10- . 3.5 X 10- 0.0253 8 

20 5.8 X 10-3 3.9 X 1I0- 0.0258 8 
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Tables I and II describe computations which differ only in the value of E. 

They show that e = AX2 is an adequate convergence criterion. Table III indicates 
that fair results can be obtained even when R At is fairly large; when R = 20, 
Ax = 7r/39, At = 2 AX2, we have 

R? 1.5 Ax-'. 
The errors are of the order of 1%. Additional computational results were presented 
in [8]. 

Application to Thermal Convection. Suppose a plane layer of fluid, in the field 
of gravity, of thickness d and infinite lateral extent, is heated from below. The 
lower boundary X3 = 0 is maintained at a temperature To, the upper boundary 
X3 = d at a temperature T1 < To. The warmer fluid at the bottom expands and 
tends to move upward; this motion is inhibited by the viscous stresses. 

In the Boussinesq approximation (see e.g. [9]) the equations describing the 
possible motions are 

atui + pu = - aip + VV2ui - g(1 - (17 - 7,o))bi, 

a tT + uja3jT = kV2T, juj = o, 

where T is the temperature, k the coefficient of thermal conductivity, a the co- 
efficient of thermal expansion, and bi the components of the unit vector pointing 
upwards. 

We write 

tt = (+)Ui T To t 

x;' =x d , 1 (d )2 + (Ti- To)dgx3 

and drop the primes. The equations now are 

- atui + ujQaj'U = -a9p + V2uti + (T - l) 

a tT + ujajT =-v2T, aju1 =o , 

where R* = agd3(To - Tl)kv is the Rayleigh number, and a- = v/k the Prandtl 
number. The rigid boundaries are now situated at X3 = 0 and X3 = 1, where it is 
assumed that ui = 0, i = 1, 2, 3. 

It is known that for R* < R,*, the state of rest is stable and no steady con- 
vection can arise, where R,* = 1707.762. 

When R* = R,*, steady infinitesimal convection can first appear, and the field 
quantities are given by 

U3= CW(x3)4, 

ui = - (a3W(x3))a4i, i = 1, 2 
a 

T = CT(x3)q5 
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where 4)= 0(x1, x2) determines the horizontal planform of the motion and satisfies 

(a12 + a22 + a2)0 = 0 

W(X3), T(x3) are fully determined functions of X3, a = 3.117, and C is a small but 
undetermined amplitude. 

In two-dimensional motion u, = 0 and the motion does not depend on xi. We 
then have 

) = cos aX2. 

The motion is periodic in X2 with period 27r/a. 
The Nusselt number Nu is defined as the ratio of the total heat transfer to the 

heat transfer which would have occurred if no convection were present. For R* 
< R*, Nu = 1. In our dimensionless variables 

a 21r/a 

Nu- f (U3T -a3T)dx2. 

A similar expression holds in the three-dimensional case. When the convection is 
steady Nu does not depend on X3. 

When R* > RI* steady cellular convection sets in. It is of interest to determine 
its magnitude and its spatial configuration. The problem of its magnitude, and in 
particular the dependence of Nu on R* and a-, when the motion is steady, has been 
studied by the author in previous work [2], [10]. As to the shape of the convection 
cells, it is known that flows may exist in which the cells, when viewed from above, 
look like hexagons, or like rectangles with various ratios of length to width, or like 
rolls, i.e. two-dimensional convection cells (see [11]). However, only cellular struc- 
tures which are stable with respect to small perturbations can persist in nature or 
be exhibited by our method. It has been shown, numerically by the author [10], 
experimentally by Koschmieder [12] and Rossby [13], theoretically, in the case of 
infinite a- and small perturbations, by Busse [14], that for R*/R,* < 10 the pre- 
ferred cellular mode is a roll. Busse showed that the rolls are stable for wave num- 
bers in a certain range. We shall now demonstrate numerically the impermanence 
of hexagonal convection and the emergence of a roll. 

Consider the case R*IR,* = 2, a- = 1. We assume the motion to be periodic 
in the xl and X2 directions, with periods respectively 47r/a V, 3 and 47r/a (the first 
period is apparently in the range of stable periods for rolls as predicted by Busse). 
These are the periods of the hexagonal cells which could arise when R* = R,*. 
The state of rest is perturbed by adding to the temperature in the plane X3 = AX3 

a multiple of the function p(x1, X2) which corresponds to a hexagonal cell, and 
adding a small constant to the temperature on the line xi = (3/4)(47r/a ,l 3), 
X2 = (3/4) (4wr/a). We then follow the evolution of the convection in time, using a 
net of 24 X 24 X 25, i.e. 

Ax1 = (47r/a a/ 3)/24, AX2 = (47r/a)/24, AX3 = 1/24. 

We choose E = Ax22, At = 3 Ax32. The connvection pattern is visualized as fol- 
lows: the velocities in the plane X3 = 17Ax3 are examined. If U3(q,r,18) > O an * is 
printed, if U3(q,r,18) < 0, a 0 is printed. 
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FIGURE 4. Evolution of a Convection Cell 
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000000000000000000000000 00*****00000000000000000 
000000000000000000000000 ********0000000000000000 

4a. After 1 step (Nu = 1) 4b. After 10 steps (Nu = 1) 
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4c. After 125 steps (Nu = 1.25) 4d. After 225 steps (Nu = 1.72) 
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0000********000000000000 0000***********000000000 
00************0000000000 0000***********000000000 
0**************000000000 0000***********000000000 
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00**************00000000 000*************00000000 
00*************000000000 000*************00000000 
000************000000000 0000***********000000000 
0000***********000000000 0000***********000000000 
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00000ooo******000000000 0000o***********000000000 
00000***********00000000 0000***********000000000 
00000************0000000 0000***********000000000 
00000*************000000 000************000000000 
00000*************000000 000*************00000000 
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4e. After 325 steps (Nu = 1.76) 4f. After 430 steps (Nu = 1.77) 

The evolution of the convection is shown in Figs. 4a, 4b, 4c, 4d, 4e, and 4f. 
The hexagonal pattern introduced into the cell is not preserved. The system evolves 
through various stages, and finally settles as a roll with period 47r/a V, 3. The value 
of Nu evaluated at the lower boundary is printed at the bottom of each figure. 
The steady state value for a roll is 1.76. The final configuration of the system is 
independent of the initial perturbation. The calculation was not pursued until a 
completely steady state had been achieved because that would have been ex- 
cessively time consuming on the computer. It is known from previous work that 
steady rolls can be achieved, and that the mesh used here provides an adequate 
representation. 

Conclusion and Applications. The Benard convection problem is not considered 
to be an easy problem to solve numerically even in the two-dimensional case. The 
fact that with our method reliable time-dependent results can be obtained even 
in three space dimensions indicates that the Navier-Stokes equations do indeed 
lend themselves to numerical solution. A number of applications to convection 
problems, with or without rotation, can be contemplated; in particular, it appears 
to be of interest to study systematically the stability of Benard convection cells 
when a- 7? oo, and when the perturbations have a finite amplitude. 

Other applications should include the 'study of the finite amplitude instability 
of Poiseuille flow, the stability of Couette flow, and similar problems. 
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